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Abstract

The e�ect of surfactants on the capillary instability of a liquid thread extending under the in¯uence of
an ambient ¯ow is studied by linear theory for small-amplitude perturbations, numerical simulations for
arbitrary amplitude perturbations based on boundary-integral and ®nite-volume methods, and numerical
simulations based on an approximate model that relies on the long-wave approximation. Theoretical
predictions and numerical simulations con®rm previous predictions that, in the absence of surfactants,
perturbations with a su�ciently small amplitude eventually decay as long as neither the viscosity of the
thread nor the viscosity of the ambient ¯uid is equal to zero. It is shown, however, that for zero or
in®nite viscosity ratio, disturbances of any wavelength eventually amplify leading to thread breakup at a
®nite time. Surfactants stabilize the interface during the initial stages of the instability, but the increase
in the mean surface tension due to surfactant dilution by stretching leads to higher perturbation
amplitudes at long times. An asymptotic ¯ow model is developed to describe the evolution of a viscous
thread suspended in an ambient inviscid ¯uid subject to axisymmetric disturbances with long
wavelength. Numerical solutions suggest that the similarity solution developed previously for a thread
suspended in a quiescent ¯uid describes the behavior during the ®nal stages of breakup. 7 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

In part I, we investigated the e�ect of surfactants on the capillary instability of a liquid
thread suspended in a quiescent ambient ¯uid, and of an annular layer coated on the interior
of a circular tube, in the absence of a mean ¯ow (Kwak and Pozrikidis, 2001). Consideration
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of the ®rst problem was motivated, in part, by the signi®cance of thread dynamics in the
processes of ¯uid dispersion and mixing of immicible liquids by agitation. In practice, however,
liquid threads typically arise from the ®lamentation of blobs or extended bubbles and drops in
shear or elongational ¯ow. The surface-tension induced ampli®cation of disturbance causes the
®laments to become unstable and eventually break up into arrays of primary and smaller
satellite bubbles or drops. The presence of the ambient ¯ow that is responsible for the
®lamentation is known to have a signi®cant in¯uence on the nature of the capillary instability,
and thus on the size of the bubbles or drops resulting from the ®lament disintegration.
Several authors have studied the instability of a thread with constant surface tension

extending under the in¯uence of an ambient ¯ow. Tomotika (1936) formulated the linear
evolution problem for axisymmetric perturbations and for an axisymmetric extensional ambient
¯ow, and discussed the long-time behavior. Mikami et al. (1975) improved Tomotika's theory,
carried out numerical simulations of the linearized system of governing equations, and
compared their numerical results with their laboratory observations. The presence of an
extensional ¯ow has three important consequences: it causes the unperturbed thread radius a to
be reduced in time in a monotonic fashion; it causes the wavelength of a periodic perturbation
to increase in time in a monotonic fashion; and it reduces the amplitude of the perturbation by
interfacial stretching due to convection. The combination of the ®rst two e�ects causes the
reduced wave number of a perturbation, ka, to decrease monotonically during the evolution,
and this renders the motion strongly dependent on the initial condition; k � 2p=L is the wave
number, and L is the wavelength of the perturbation.
The theoretical studies of Mikami et al. (1975) revealed that, under most conditions, a

perturbation with a reduced wave number ka that is higher than unity initially decays; when ka
becomes equal to unity, the perturbation starts growing with a time-dependent rate; ®nally, as
ka tends to zero, the growth rate vanishes and then becomes negative, and the perturbation
decays. If the amplitude of the perturbation happens to exceed the thread radius at some time
during the period of transient growth, then breakup occurs at a ®nite time. The assumptions
upon which the linear analysis relies, however, cease to be valid well before breakup, and the
theoretical predictions of the conditions and time of breakup are only suggestive.
Khakhar and Ottino (1987) extended the analyses of Tomotika (1936) and Mikami et al.

(1975) by considering an arbitrary linear ambient ¯ow, which includes, as a special case, the
axisymmetric elongational ¯ow considered by the previous authors. Numerical solutions of the
linearized evolution equations for simple shear ¯ow and plane hyperbolic extensional ¯ow
showed that the structure of the ambient ¯ow has a noticeable but not a profound e�ect on
the nature of the instability.
In this paper, we extend the work of the previous authors in several ways. First, we discuss

in more detail the special case of a viscous thread suspended in an inviscid ambient ¯uid and
of an inviscid thread suspended in a viscous ambient ¯uid, and argue that, in these two cases,
any perturbation is destined to grow at long times. Second, we extend the linear analysis to
account for the presence of an immiscible surfactant that causes variations in surface tension
according to a linear constitutive equation. In part I, it was shown that, in the absence of an
ambient ¯ow, a surfactant stabilizes an interface (Kwak and Pozrikidis, 2001). In this paper,
we show that the increase in the mean level of the surface tension due to surfactant dilution
leads to larger perturbation amplitudes at long times. Third, we carry out numerical
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simulations based on boundary-integral and ®nite-volume methods to describe the evolution of
waves whose amplitude is not small compared to the thread radius, as required by linear
theory, and thereby establish the behavior of the thread in the regime where the linearized
approximation is not valid. Fourth, we develop a simpli®ed system of equations that govern
the evolution of a viscous thread suspended in an inviscid ambient ¯uid subject to long wave-
length perturbations. The asymptotic model is an extension of that derived previously by
Renardy (1994) and Papageorgiou (1995) for a thread suspended in a quiescent ambient ¯uid.
Numerical solutions con®rm that a similarity solution derived by Papageorgiou (1995)
describes the behavior of the extended thread near the time and around the position of
breakup even in the presence of extensional ¯ow.

2. Problem statement and dimensional arguments

Consider an in®nite thread of a Newtonian ¯uid with viscosity m, designated as ¯uid 1,
suspended in an unbounded ambient Newtonian ¯uid with viscosity lm, designated as ¯uid 2,
subject to an ambient axisymmetric elongational ¯ow, as illustrated in Fig. 1. Gravitational
forces are insigni®cant, and both the ¯ow and the interface are required to remain
axisymmetric at all times. The Reynolds number, de®ned with respect to the instantaneous
thread radius and the maximum rate of elongation within the thread, is assumed so small that
inertial e�ects are insigni®cant and the motion within the thread and ambient ¯uid is governed
by the linear equations of Stokes ¯ow.
The interface is populated by an insoluble surfactant that is convected by the interfacial

velocity ®eld and di�uses over the evolving interface but not into the bulk of the ¯uids. In

Fig. 1. Illustration of an in®nite thread with viscosity m surrounded by an ambient ¯uid with viscosity lm, subject to
an axisymmetric elongational ¯ow.
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polar cylindrical coordinates �x, s, j� with the x-axis coaxial with the thread, the evolution of
the surfactant concentration G is governed by the convection-di�usion equation

dG
dt
� ÿu � t @G

@ l
ÿ G

s
@�su � t�
@ l

ÿ G2kmu � n� Ds

s
@

@ l

�
s
@G
@ l

�
�1�

where the derivative d/dt on the left-hand side expresses the rate of change following the
motion of interfacial marker points moving with the component of the ¯uid velocity normal to
the interface; l is the arc length along the trace of the interface in a meridional plane measured
in the direction of the unit tangent vector t, n is the unit normal vector pointing into the
thread, km is the mean curvature of the interface, and Ds is the surfactant di�usivity.
When the concentration of the surfactant lies below a saturation level, and variations in the

surfactant concentration are su�ciently small, the surface tension g is related to the surfactant
concentration by Gibbs' equation

gc ÿ g � GRT �2�
where R is the ideal gas constant, T is the absolute temperature, and gc is the surface tension
of the clean interface in the absence of surfactants, (e.g., Adamson 1990). The sensitivity of the
surface tension to the surfactant concentration is expressed by the dimensionless
physicochemical parameter

b � GrRT

gc

�3�

where the subscript r denotes a reference value. In terms of b, Eq. (2) takes the form

g � gc

�
1ÿ G

Gr
b
�

�4�

Setting G � Gr, we obtain a relation between the reference surface tension and the surface
tension of a clean interface,

gr � gc�1ÿ b� �5�
which may be substituted in Eq. (4) to give

g � gr
1ÿ b

�
1ÿ G

Gr
b
�

�6�

In the unperturbed state, the interface has a cylindrical shape with a circular cross-section of
changing radius a(t ). The axial and radial components of the velocity inside and outside the
thread are given by

u1x � G�t� x, u1s � ÿ
1

2
G�t� s �7�

where G(t ) is a speci®ed time-dependent rate of elongation. Using the kinematic condition
da=dt � us �s � a�, we obtain a linear evolution equation for the thread radius,
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da

dt
� ÿ1

2
G�t� a �8�

Assuming that the surfactant concentration is uniform, simplifying Eq. (1), and setting
km � ÿ1=�2a�, we obtain an evolution equation for the surfactant concentration,

dG
dt
� ÿ1

2
G�t� G �9�

which shows that if the surfactant concentration is uniform at the initial instant, it will remain
uniform at all times.
The pressure within the ambient ¯uid has the uniform but possibly time-dependent value

P1�2�, and the pressure within the thread has the uniform value P1�1� � P1�2� � g�t�=a�t�: In
polar cylindrical coordinates, the components of the stress tensor are given by

s1�1�xx � ÿP1�1� � 2mG, s1�1�xs � 0,

s1�1�sx � 0, s1�1�ss � ÿP1�1� ÿ mG, �10�
within the thread, and

s1�2�xx � ÿP1�2� � 2lmG, s1�2�xs � 0,

s1�2�sx � 0, s1�2�ss � ÿP1�2� ÿ lmG, �11�
within the ambient ¯uid. Note that the shear stress vanishes at the interface, whereas the
normal stress undergoes a discontinuity determined by the surface tension, the local thread
radius, the viscosity ratio, and the instantaneous rate of elongation.
Consider now the evolution of periodic axisymmetric perturbations in the radial position of

the interface, and accompanying perturbations in the surfactant concentration. Linear stability
analysis for a thread suspended in a quiescent ambient ¯uid reveals that when the reduced
wave number ka is less than unity, where k � 2p=L and L is the wavelength of the
perturbation, the interface is unstable. The presence of surfactants reduces the growth rate of
the perturbation but does not a�ect the range of unstable wave numbers, nor it is able to
stabilize the ¯ow (Kwak and Pozrikidis, 2001).
In the case of an extending thread, the axial velocity increases by the amount G(t) L(t) over

each period, and the wavelength L(t) increases in time according to the equation

dL

dt
� G�t� L �12�

Correspondingly, the wave number is reduced in time according to the equation

dk

dt
� ÿG�t� k �13�
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Thus, even if the initial wavelength corresponds to a reduced wave number ka that is stable,
the diminishing radius of the thread, combined with the reduction in the wave number due to
stretching, will ultimately bring ka into the unstable regime ka < 1, thereby rendering the
thread susceptible to the capillary instability. The growth of interfacial waves in this regime,
however, is opposed by the radially compressive action of the ambient ¯ow. Our goal is to
assess which mechanism will dominate at long times.
Consider ®rst the instability of a clean interface. Working under the auspices of linear

theory, we ®nd, on the grounds of dimensional analysis, that the rate of change of the
amplitude of a periodic wave, denoted as a1, is given by

da1
dt
� G�t�

�
ÿ 1

2
� lÿ 1

l� 1
~F�ka, l�

�
a1 � g

am�l� 1�
~S�ka, l� a1 �14�

where ~F is a dimensionless function of ka and l, and ~S is the normalized Rayleigh±Tomotika
growth rate for a quiescent thread (Tomotika, 1935). When the viscosity ratio l is equal to
unity, the crests and troughs of an interfacial wave are convected passively by the elongational
¯ow, and the term involving ~F on the right-hand side of Eq. (14) drops out. It is particularly
signi®cant to note that as l tends to zero or to in®nity, the location of the maximum of ~S is
shifted to zero, which means that the longer a wave, the faster it grows.
Using the evolution Eq. (8), we may transform Eq. (14) into an evolution equation for the

ratio of the amplitude of the perturbation to the instantaneous mean thread radius,

d

dt

�
a1
a

�
� G�t� lÿ 1

l� 1
~F�ka, l� a1

a
� g

am�l� 1�
~S�ka, l� a1

a
�15�

If the ratio a1/a becomes equal to unity at any time, the thread pinches o� yielding two
alternating arrays of drops.
Whether or not an interfacial wave will grow or decay is determined by the sign of the right-

hand sides of Eqs. (14) or (15), which depends on the instantaneous thread con®guration and
thus on the history of the motion. At long times, ka tends to zero, the dimensionless functions
~F and ~S behave as k2a2 ln�ka� for any ®nite and non-zero value of l (Mikami et al., 1975,
appendix I-A), the ®rst term on the right-hand side of Eq. (14) dominates, and a1 decays at an
exponential rate. In contrast, for zero or in®nite values of l, corresponding to a viscous thread
suspended in an inviscid ambient ¯uid or to an inviscid thread suspended in a viscous ambient
¯uid, as ka tends to zero, the dimensionless functions ~F and ~S tend to constant values. At long
times, the second term on the right-hand side of Eqs. (14) or (15) dominates, and a1=a
increases at an exponential rate leading to breakup at a ®nite time. These di�erences in the
long time behavior underline the importance of the viscosity of either ¯uid.
Considering next the growth of perturbations in the presence of surfactants, we identify the

reference values Gr and gr with the initial unperturbed values denoted, respectively, by G0�t �
0� and g0�t � 0�: Thus,

b � G0�t � 0�RT
gc

�16�

where the subscript 0 denotes the uniform values pertaining to the cylindrical thread.
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Dimensionless analysis suggests that, in the context of linear theory, the rate of change of the
amplitude of a periodic wave is governed by an equation of the form

da1
dt
� G�t�a

�
ÿ 1

2
� lÿ 1

l� 1
~F�ka, l�

�
a1
a
� g0�t�

m�l� 1� ~w
�
ka, l, b, a,

G0�t�
G0�t � 0�

�
a1
a

� g0�t � 0�
m�l� 1�

~c
�
ka, l, b, a,

G0�t�
G0�t � 0�

�
G1�t�

G0�t � 0� �17�

where ~w and ~c are the dimensionless functions of their arguments, G1 is the amplitude of the
perturbation in the surfactant concentration, and we have introduced the dimensionless
parameter

a � a�t � 0�g0�t � 0�
mDs

�18�

expressing the surfactant di�usivity. A similar equation can be written for G1, and the system
of the two linear evolution equations must be solved subject to an appropriate initial
condition. When the rate of extension vanishes and the initial amplitudes of the interfacial
deformation and surfactant concentration correspond to one of the two possible normal
modes, the eigenvalues of the coe�cient matrix of the linear system can be deduced from the
dimensionless growth for a quiescent thread discussed by Kwak and Pozrikidis (2001).
The results of Kwak and Pozrikidis (2001) showed that the eigenvalues depend weakly on

the parameters b, a, and G0=G0�t � 0� for a broad range of conditions, and may thus be
approximated with the normalized Rayleigh±Tomotika growth rate ~S introduced in Eq. (14).
Now, the unperturbed surfactant concentration G0 is reduced in time according to Eq. (9);
accordingly, the unperturbed surface tension g0 increases in time according to Eq. (4). As a
result, the presence of a surfactant raises the magnitude of the second term on the right-hand
side of Eq. (17), and thereby promotes the ampli®cation of the perturbation in the regime of
unstable wave numbers. This prediction will be con®rmed by the numerical solutions presented
in the following sections.

3. Linear waves

To study the evolution of periodic perturbations whose amplitude is small compared to the
instantaneous thread radius, we describe the radial position of the interface in the form

s � f�x, t� � a�t� � Ea1�t� cos�k�t�x� �19�
where E is a dimensionless number whose magnitude is small compared to unity, and a1�t� is
the amplitude of the disturbance in the radial position. The surfactant concentration and
surface tension are expressed in the analogous forms

G�x, t� � G0�t� � EG1�t� cos�k�t�x� �20�
and
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g�x, t� � g0�t� � Eg1�t� cos�k�t�x� �21�

Substituting Eqs. (20) and (21) into constitutive Eq. (6), we ®nd

g0�t� �
gr

1ÿ b

�
1ÿ G0�t�

Gr
b
�
, g1�t� � ÿ

grb
1ÿ b

G1�t�
Gr

�22�

Next, we decompose the velocity within each ¯uid into an unperturbed component denoted
as u1, given in Eq. (8), and a periodic disturbance component denoted as uD, so that

u�j� � u1�j� � uD�j� �23�

for j � 1, 2, corresponding to the thread or ambient ¯uid. The axial and radial components of
the disturbance velocity are related to the Stokes stream function Cj by

uD�j�x � E
1

s
@Cj

@s
, uD�j�s � ÿE1

s
@Cj

@x
�24�

for j = 1, 2. Following the analysis of Kwak and Pozrikidis (2001), we ®nd

Cj�s� � s
ÿ
A1,jI1�ks� � B1,jK1�ks� � A2,jsI0�ks� � B2,jsK0�ks�

�
cos�k�t�x� �25�

where A1,j, A2,j, B1,j, and B2,j are constants, and I0, K0, I1, K1 are modi®ed Bessel functions.
Requiring a regular behavior at the thread axis and at in®nity, we ®nd that B1,1B2,1, A1,2 and
A2,2 must vanish. Mikami et al. (1975) used an alternative form of the solution in terms of the
modi®ed Bessel functions I1, K1 and their ®rst derivatives, but the two representations are
equivalent with the present one being more convenient for algebraic manipulations.
We proceed by deriving and linearizing expressions for the cylindrical polar components of

the velocity, pressure, normal vector, mean curvature, and surface tension with respect to E:
Substituting the simpli®ed forms into the kinematic and dynamic boundary conditions, and
then collecting and linearizing the resulting expressions, we obtain the linear algebraic system

Mw � b �26�

for the vector

wT � �A1, A2, B1, B2 � �27�

where, for simplicity, we have denoted A1 � A1,1, A2 � A2,1, B1 � B1,2, and B2 � B2,2: The
coe�cient matrix on the left-hand side of Eq. (26) is given by
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M �26666664
I1�ka� aI0�ka� ÿK1�ka� ÿaK0�ka�
kI0�ka� kaI1�ka� � 2I0�ka� kK0�ka� kaK1�ka� ÿ 2K0�ka�
mkI1�ka� m

ÿ
I1�ka� � kaI0�ka�

�
ÿlmkK1�ka� lm

ÿ
K1�ka� ÿ kaK0�ka�

�
m
a

ÿ
kaI0�ka� ÿ I1�ka�

�
mkal1�ka� lm

a

ÿ
kaK0�ka� � K1�ka�

�
lmkaK1�ka�

37777775
�28�

and right-hand side is given by

bT �
�
0, 0,

3

2
m�1ÿ l�Ga1 ÿ 1

2

grb
1ÿ b

G1�t�
Gr

,
1

2ka2

�
a1g0�t� �1ÿ k2a2� � a gr

b
1ÿ b

G1�t�
Gr

��
�29�

In the absence of surfactants, G1 � 0, or when the surface tension is insensitive to the
surfactant concentration, b � 0, we recover the results of Mikami et al. (1975, eqs. (3.6)) with
some variations in the coe�cient matrix due to the di�erent expressions for the stream
functions.
To describe the deformation of the interface, we require an evolution equation for the

amplitude of the perturbation and for the amplitude of the surfactant concentration. To obtain
the former, we require that the motion of point particles over the interface is consistent with the
functional form (19), that is D�sÿ f �=Dt � 0, where D=Dt is the material derivative, and ®nd

us � @s
@t
� ux

@s
@z

�30�

To obtain the latter, we use the surfactant convection±di�usion Eq. (1). Substituting the
linearized expressions for the velocity, mean curvature, unit normal and tangent vectors into
Eqs. (30) and (1), and linearizing all terms with respect to E, we obtain three decoupled linear
evolution equations for the wave number, unperturbed thread radius, and surfactant
concentration

dk

dt
� ÿG�t�k, da

dt
� ÿ1

2
G�t�a, dG0

dt
� ÿ1

2
G�t�G0, �31��

and two coupled, highly nonlinear evolution equations for the disturbance amplitudes

da1
dt
� ÿ1

2
G�t�a1 � k

�
A1I1�ka� � A2aI0�ka�

�
�32�

and

dG1

dt
� ÿ

�
1

2
G�t� �Dsk

2

�
G1 � G0�t�k

�
A1kI1�ka� � A2

�
2I0�ka� � kaI1�ka�

�	
ÿ 1

2

a1
a
G0�t��1ÿ k2a2�G�t� ÿ G0�t�k

a

ÿ
A1I1�ka� � A2I0�ka�

�
ÿ 1

2

a1
a
G0G�t� �33�
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Eqs. (31) show that the reduced wave number ka decreases monotonically and tends to
vanish at long times. When the ambient ¯uid is quiescent corresponding to G = 0, the wave
number, unperturbed thread radius, and unperturbed surfactant concentration are constant,
the coe�cients on the right-hand side of Eqs. (32) and (33) are independent of time, and the
perturbation amplitudes a1�t� and G1�t� are exponential functions of time corresponding to
normal modes. The growth rates were computed and graphed by Kwak and Pozrikidis (2001).
More generally, the solution of system (32) and (33) must be found using numerical methods.
In the remainder of this paper, we con®ne our attention to a thread that is stretched at a

constant rate. Treating G as a constant, we ®nd that the wave number, unperturbed thread
radius, and unperturbed surfactant concentration are exponentially decreasing functions of
time given by

k�t� � k�t � 0� eÿGt, a�t� � a�t � 0� eÿGt=2, G0�t� � G0�t � 0� eÿGt=2 �34�
The reduced wave number is given by

ka�t� � �ka��t � 0� eÿ3Gt=2 �35�
Substituting the expression for the unperturbed thread radius in Eq. (32), we obtain the more
compact form

d

dt

�
a1
a

�
� k

a

�
A1I1�ka� � A2aI0�ka�

�
�36�

The coe�cients A1 and A2 may be expressed as linear combinations of two parts: one part that
is proportional to the rate of extension, and a second part that is proportional to the surface
tension, as shown in Eq. (17). When the viscosities of the ¯uids are identical, the ®rst part
vanishes.
Eqs. (33) and (36) provide us with a linear non-autonomous system of ordinary di�erential

equations for a1 and G1: Dimensional analysis shows that the solution depends on the viscosity
ratio l, the initial reduced wave number (ka )(t = 0), the initial capillary number
Ca0 � mGa�t � 0�=g0, the surfactant sensitivity parameter b de®ned in Eq. (16), the surfactant
di�usivity property number de®ned in Eq. (18), and the initial ratio of the reduced amplitudes
of the interface deformation and surfactant concentration, d � �G1=G0�=�a1=a� evaluated at t �
0: In the context of linear theory, the initial reduced amplitude of the interface deformation
(a1/a )(t = 0) serves only as a scaling factor.
In the absence of surfactants, the solution of the linear system depends on l, Ca0, and

(ka )(t = 0). Mikami et al. (1975) and Khakhar and Ottino (1987) presented numerical results of
an integrated version of Eq. (36) for several combinations of (ka ) (t= 0) and Ca0, and for several
non-zero and ®nite values of the viscosity ratio l, con®rming the predictions of the scaling
arguments discussed in Section 2. The elongational ¯ow causes the amplitude of a perturbation
with a reduced wave number ka larger than unity to initially decrease in an exponential
fashion; when ka reaches unity, the capillary instability reduces the rate of decay or even
causes growth at a time-dependent rate; as ka tends to zero, the growth rate of the capillary
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instability tends to vanish and the elongational ¯ow dominates causing exponential damping.
Thus, as long as l is ®nite and non-zero, the amplitude of the perturbation eventually decays
yielding a thinning cylindrical thread at long times.
To illustrate the e�ect of surfactants, we consider the evolution of a thread for l � 1,

Ca0 � 0:1, d � 1, and for several reduced initial wave numbers �ka��t � 0� � 1, 2, 3, 4, 5,
considered by examined by Mikami et al. (1975). All numerical results were obtained using the
second-order Runge-Kutta method implemented with a constant time step. Numerical
simulations for clean and polluted interfaces with b � 0:5 and a � 100 showed that the
disturbance initially decays faster in the presence of a surfactant than it does for a clean
interface, for the following two reasons. First, a surfactant stabilizes a thread suspended in an
quiescent ¯uid, that is, it reduces its growth rate (Kwak, and Pozrikidis 2001). Second, the
extensional ¯ow causes surfactant dilution and thus raises the mean level of the surface
tension; the higher the surface tension, the faster the rate of decay. When, however, the
interface becomes unstable for �ka��t� < 1, these two e�ects work in opposite ways; the ®rst
one reduces the growth rate of the instability, and the second one promotes it. As a result, at
long times, the amplitude of the perturbation in the presence of a surfactant is higher than that
for a clean interface, except when �ka��t � 0� � 5: This exception is due to the subtle
competition of the two aforementioned e�ects during the early stages of the evolution.
Next, we examine the e�ect of the capillary number Ca0 for a neutrally stable initial reduced

wave number �ka��t � 0� � 1: Simulations have shown that below a critical capillary number
that depends on the physical parameters, the capillary instability dominates and the thread
breaks up into a perfectly periodic series of drops (Kwak 1999). When Ca0 is raised above the
critical value, the disturbance grows temporarily, reaches a maximum, and then it decays under
the in¯uence of the elongational ¯ow. For higher values of Ca0 the damping action of the
elongational ¯ow dominates at the outset, and the amplitude of the disturbance decays at short
and long times. For l � 1, b � 0:5, a � 100, and d � 1, the critical capillary number is
estimated to be Ca0 � 0:05: Eq. (14) suggests that the rate of decay is proportional to the
instanteneous thread radius.
Next, we address the e�ect of the surfactant sensitivity parameter b, de®ned in Eq. (16). The

numerical results have shown that raising b reduces the growth rate of the disturbance during
the early stages of the motion, but the stabilizing e�ect diminishes or even disappears at long
times. Once again, the increase in the mean surface tension due to surfactant dilution promotes
the capillary instability; raising b causes the amplitude of the perturbation to reach higher
levels at long times. When l � 0, the perturbation keeps growing, eventually causing the thread
to pinch o� at the troughs of the periodic wave at long times. In constrast, when l � 1, the
perturbation eventually decays. These di�erences corroborate the arguments of Section 2
regarding the singular behavior occurring when either the thread or the ambient ¯uid is
inviscid.
Fig. 2 illustrates the e�ect of the surfactant di�usion parameter a de®ned in Eq. (18) for

l � 1, Ca0 � 0:1, b � 0:5, �ka��t � 0� � 1, and d � 1; the solid lines correspond to a clean
interface. The lower the value of a, the higher the surfactant di�usivity and the more uniformly
the surfactant is distributed over the interface. Comparing the growth curves for the various
values of a displayed in this ®gure, we ®nd that reducing the surfactant di�usivity, and thus
allowing the establishment of stronger surfactant concentration gradients, initially reduces the
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growth rate of the perturbation, in agreement with the results of Kwak and Pozrikidis (2001)
for an unstretched interface. Dilution of the surfactant, however, smears out the concentration
gradients and diminishes the signi®cance of the surfactant di�usivity at long times. For l � 0,
the amplitude of the disturbance grows monotonically at long times in agreement with the
arguments in Section 2.

4. Boundary-integral simulations

Linear theory predicts that the thread is overall stable when the viscosity ratio l is non-zero
and non-in®nite, and unstable otherwise. For non-zero and ®nite values of l, the presence of a
surfactant initially reduces the growth rate of a disturbance, but the reduction of the surfactant
concentration at long times, due to interfacial stretching, raises the mean level of the surface
tension and allows the perturbation to survive for a longer period of time. Linear theory may
cease to be valid during a certain stage of the evolution when the amplitude of the
perturbation is no longer in®nitesimal. To account for this occurrence, we investigate the non-
linear evolution using a boundary-integral method.
To formulate the numerical method, we decompose the ¯ow in an unperturbed and a

disturbance component, as shown in Eq. (23). The disturbance velocity satis®es the integral
equation

uDa �x0�� 2

1� l

 
ÿ 1

8pm1

�
C

Gab�x, x0� DfDb �x� dl�x��
1ÿ l
8p

�PV
C

Qabg�x, x0� uDb �x� ng�x� dl�x�
!
�37�

where point x0 lies in the interface, Greek subscripts, a, b, and g, run over the axial and radial
polar cylindrical coordinates x or s, C is one period of the contour of the interface in a
meridional plane, l is the arc length along C, n is the unit normal vector to the interface
pointing into the thread, PV denotes the principal value of the double-layer integral, and the

Fig. 2. Evolution of the amplitude of a contaminated interface with l � 1, b � 0:5, d � 1, Ca0 � 0:1, (ka )(t = 0) =
0.9, and (a1/a )(t = 0) = 0.01, for a=1, 10, 100, 1000.
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kernels G and Q are the velocity and stress periodic Green's functions of axisymmetric Stokes
¯ow (Pozrikidis, 1992).
The density of the single-layer potential DfD is the disturbance component of the jump in the

interfacial traction, de®ned as

DfD � fD
�1� ÿ fD

�2� �
ÿ
sssD�1� ÿ sssD�2�

�
� n �38�

where sssD�1� and sssD�2� are, respectively, the disturbance stress tensor in the thread and ambient
¯uid. Combining the decomposition DfD � Df ÿ Df1 with the interfacial traction jump
condition Df�g2kmnÿ�Iÿnn� � rg, and using expressions (10) and (11), we ®nd

DfD � g2kmnÿ �I ÿ nn� � rgÿ mG�1ÿ l� �2nxex ÿ nses� �39�
The numerical method for solving the integral Eq. (37) and simultaneously integrating the

convection-di�usion equation for the concentration of the surfactant, Eq. (1), is discussed by
Kwak and Pozrikidis (2001). The demands on CPU time, however, are substantially higher due
to the exponential increase of the domain of computation. A typical simulation requires
approximately 72 h of CPU time on a SUN SPARCstation 20 workstation. All numerical
results presented in this section correspond to a constant rate of elongation G.
First, we consider a thread with a clean interface for l � 1, �a1=a��t � 0� � 0:2, Ca0 � 0:1,

and initial wave numbers �ka��t � 0� � 1, 2, 3, 4, and 5, and con®rm consistency with the
predictions of linear theory. Fig. 3 shows the evolution of the reduced amplitude of the
interface, a1(t )/a1(t = 0), plotted against the instantaneous reduced wave number (ka )(t ) on a
log-linear scale. The solid lines correspond to the boundary-integral simulations, and the
dashed lines correspond to the predictions of linear theory. The ®gure shows that the
disturbance is eventually stabilized by the extensional ¯ow, with a brief period of growth
occurring when the reduced wave number is less than, but close to, unity. The agreement

Fig. 3. Evolution of the disturbance amplitude computed by the boundary integral method (solid lines) or by the
linear theory of Mikami et al. (dashed lines) for a thread with l � 1, b � 0 (clean interface), for Ca0=0.1, (a1/a )(t
= 0) = 0.2 and (ka )(t = 0) = 1, 2, 3, 4, and 5.
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between the numerical results and the linearized predictions is good even though the amplitude
of the perturbation may not be negligible compared to the thread radius.
Next, we consider the e�ect of the strength of the ambient ¯ow. For low values of Ca0,

corresponding to a weak ¯ow, the thread breaks up into two alternating series of primary and
secondary drops. The ratio of the volume of the primary drops to the volume of the secondary
drops decreases as Ca0 is raised. This trend is consistent with the results of boundary-integral
simulations by Kwak and Pozrikidis (2001) in the absence of an elongational ¯ow, which
showed that the volume ratio increases monotonically with the wavelength of the perturbation.

Fig. 4. (a) Characteristic stages in the evolution of a thread for l � 1, b � 0 (clean interface), (ka )(t = 0) = 0.9,

(a1/a )(t = 0) = 0.2 and Ca0 = 0.02. (b) Corresponding minimum thread radius.
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The analogy is made by noting that the higher the capillary number, the longer the wavelength
of the perturbation at the time of breakup. When the capillary number exceeds the critical
capillary number, as discussed in Section 3, the extensional ¯ow suppresses the growth of the
perturbations and breakup does not occur during the length of the simulation, although a
small waviness persists at long times. This behavior is consistent with the predictions of linear
theory discussed in Section 2. As an example, in Fig. 4(a), we present a sequence of interfacial
pro®les for l � 1, �ka��t � 0� � 0:9, Ca0 = 0.02, and for a moderate initial disturbance
amplitude �a1=a��t � 0� � 0:2:
Fig. 4(b) shows the evolution of the minimum thread radius corresponding to the capillary

numbers Ca0 � 0:001, 0:01, 0:02, 0:035, and 0.05. For Ca0R0:001, the capillary instability
dominates at all times, the growth curve is concave downward, and the thread breaks up at a
®nite time yielding a series of drops. It is interesting to note that the breakup time is a non-
monotonic function of Ca0. For example, when Ca0 � 0:01, the thread breaks up faster than it
does for Ca0 � 0, in agreement with the observations of Grace (1982). As Ca0 is raised, the
critical time decreases, reaches a minimum, and then tends to in®nity at a critical capillary
number. For Car0:035, the extensional ¯ow dominates at all times, and the amplitude of the
interface decays in a nearly exponential fashion, in agreement with the predictions of linear
analysis discussed in Section 3. In the intermediate range of capillary numbers, the growth
curve is initially concave downward due to the capillary instability, but then it develops an
in¯ection point and decays exponentially at long times.
Next, we consider the evolution of the extending thread in the presence of a surfactant. Fig. 5

illustrates the evolution of the reduced minimum radius plotted with respect to time for l � 0,
corresponding to a viscous thread suspended in an inviscid ambient ¯uid, b � 0:5, a � 100,
�ka��t � 0� � 0:9, Ca0 � 0:01 corresponding to a weak elongational ¯ow, and for a small
perturbation amplitude �a1=a��t � 0� � 0:01: The solid lines represent the boundary-integral
simulations, and the dashed lines represent the predictions of linear theory. To illustrate the

Fig. 5. Minimum thread radius for l � 0, b � 0:5, a � 100, (ka )(t = 0) = 0.9, (a1/a )(t = 0) = 0.01 and

Ca0 � 0:01: The solid lines represent numerical simulations based on the boundary integral method, and the dashed
lines represent the predictions of the linear theory.
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Fig. 6. (a) Minimum thread radius for l � 1, b � 0:5, a � 100, (ka )(t = 0) = 0.9, (a1/a )(t = 0) = 0.01 and
Ca0 � 0:01: The solid lines represent numerical simulations based on the boundary integral method, and the dashed
lines represent the predictions of the linear theory. (b) and (c) Characteristic stages in the evolution of the thread

and surfactant concentration.
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e�ect of the surfactant, we have included results for a clean interface corresponding to b � 0:
The results show that the surfactant stabilizes the thread during the early stages of the motion,
but the amplitude of the disturbance starts growing at t̂010, and the thread breaks up into
drops at long times. Fig. 5 shows the evolution of the minimum thread radius, revealing that
the critical time for breakup increases by approximately 35% in the presence of the surfactant.
In addition to a�ecting the critical time of breakup, the surfactant initiates non-linear
interactions at an earlier stage of the motion, and the numerical simulation diverges from the
linear prediction earlier than it does for a clean interface.
Fig. 6(a) is the counterpart of Fig. 5 for l � 1: Comparison of the two cases reveals that

when the viscosity of the ambient ¯uid is comparable to that of the thread, the surfactant
promotes the growth of the interfacial waves, although the e�ect is small. In addition,
signi®cant discrepancies between the linear predictions and the numerical simulations occur at
long times, with the e�ect of the surfactant being overestimated by linear theory. To illustrate
the reason for these discrepancies, in Fig. 6(b) we present typical stages in the evolution of the
interface, and in Fig. 6(c) we show the corresponding evolution of the surfactant concentration.
Note that the pro®les have been rescaled with respect to the instantaneous wavelength. Several
features are worth noting: as in the case of a clean interface, the thread breaks up
asymmetrically yielding two alternating series of drops; because of the long evolution time until
breakup, the ratio of the volume of the primary and secondary drops is small; and the
extensional ¯ow causes the formation of an unduloid on the secondary drop.
As a ®nal topic, we examine the e�ect of the initial amplitude of the perturbation on thread

breakup. Numerical simulations have shown that a weak elongational ¯ow does not alter the
general features of the evolution when l � 0: However, when l � 1, the thread breaks up into
three alternating arrays of drops in the absence of elongational ¯ow, but forms a drop-spindle
structure in the presence of elongational ¯ow, as it does under constant surface tension. In
physical terms, dilution of the surfactant due to interface stretching prevents the formation of
tertiary drops.
Fig. 7 illustrates the evolution of the minimum thread radius, con®rming the behavior

Fig. 7. Evolution of the minimum thread radius for a clean interface (solid lines) and a polluted interface with
b � 0:5, a � 100 (dotted lines) for l � 0, 1, and (ka )(t = 0) = 0.9, (a1/a )(t = 0) = 0.2, and Ca0 � 0:01:
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discussed earlier on the basis of Figs. 4 and 5; the polluted interface is represented by a dashed
line, and the clean interface is represented by a solid line. The presence of a surfactant delays
the break up time for l � 0, but its e�ect is insigni®cant for l � 1:

5. Local dynamics near break up

In this section, we turn our attention to the evolution of a viscous thread suspended in an
inviscid ambient ¯uid, subject to long wave-length perturbations, and discuss the predictions of
a simpli®ed system of governing equations based on long-wave asymptotics. This analysis
extends previous work by Renardy (1994), Papageorgiou (1995) and Brenner et al. (1996),
which is applicable for a thread suspended in a quiescent ambient ¯uid. In fact, only simple
modi®cations are necessary to account for an ambient axisymmetric extensional ¯ow.
Analogous model systems for Navier±Stokes ¯ow have been developed by Eggers (1997); the
extension of the inertial model to include stretching due to ambient ¯ow is straightforward.
Papageorgiou (1995) and Brenner et al. (1996) showed that in the absence of stretching,

corresponding to Ca0 � 0, the asymptotic equations admit a family of similarity solutions
which predict that breakup occurs at a ®nite time. Pozrikidis (1999) con®rmed the physical
relevance of the least unstable similarity solution by comparing its predictions with numerical
simulations based on the boundary-integral method. This similarity solution reveals that the
velocity ®eld and viscous stresses tend to become singular near the point of breakup at the
critical time. Because of this singularity, the viscous stresses associated with the motion induced
by capillarity become increasingly stronger than those of the non-singular imposed extensional
¯ow, and the similarity solution developed by Papageorgiou (1995) is expected to become
asymptotically valid even in the presence of an extensional ¯ow.
To con®rm the relevance of the similarity solution near the critical time of breakup, we

performed numerical simulations based on it, and compared the results with numerical
simulations conducted using the boundary-integral method. In the absence of a surfactant, the
fundamental assumptions of the long wave model are: (a) the shear stress vanishes at the
interface, (b) the slope of the interface @f=@x is small compared to unity, where the equation
s � f�x, t� describes the position of the interface, and (c) the pressure within the thread p and
axial velocity ux are independent of the radial position s: To derive the model system, we may
either pursue the integral balance approach of Renardy (1994), or the formal long-wave
asymptotics approach of Papageorgiou (1995). Either way, we derive the simpli®ed equations

@f

@t
� ux

@f

@x
� 1

2

@ux
@x

f � 0 �40�

and

3m
2
f
@ 2ux
@x 2
� 3m

@ux
@x

@f

@x
� g

2f

@f

@x
� 0 �41�

which are identical to those derived by the previous authors in the absence of an elongational
¯ow. Note that Eq. (40) is consistent with Eq. (30) for an unperturbed interface. The presence
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of a surfactant may be included by adding an appropriate term to the left-hand side of Eq.
(41) expressing the Marangoni shear stress at the interface, while also supplementing Eqs. (40)
and (41) by a convection-di�usion equation for the surfactant concentration. Kwak and
Pozrikidis (2001) presented strong evidence that the presence of surfactants does not a�ect the
nature of the evolution in the absence of external stretching; a similar insensitivity is expected
in the presence of an ambient ¯ow.
To simplify the discussion, we con®ne our attention to a thread that is stretched at a

constant rate corresponding to a constant rate of elongation G. To isolate the e�ect of the
extensional ¯ow, we introduce the dimensionless Lagrangian axial coordinate

x � x

a0
exp

ÿ
ÿ Ca0t̂

�
�42�

where t̂ � gt=ma0 is the dimensionless time, a0 � a�t � 0� is the initial thread radius, Ca0 �
mGa0=g is the initial capillary number, and g is the constant and uniform surface tension.
Furthermore, we express the position of the interface and axial velocity in the forms

f � a0 ~f
ÿ
x, t̂

�
exp

�
ÿ 1

2
Ca0t̂

�
�43�

and

ux � Gx� g
m

~ux
ÿ
x, t̂

�
exp

ÿ
Ca0t̂

�
�44�

where ~f and ~ux are periodic functions of x with reduced wavenumber ka. The undisturbed
stretched cylindrical interface corresponds to the ¯at distributions ~f � 1 and ~ux � 0:
Substituting expressions (42)±(44) into Eqs. (40) and (41), we derive the dimensionless

equations
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The e�ect of the extensional ¯ow is manifested in the third and fourth terms on the left-hand
side of Eq. (46). The model system comprising of Eqs. (45) and (46) was solved by a spectral
collocation method similar to that used by Papageorgiou (1995), keeping 20 Fourier
components in space, and using a second order Runge-Kutta scheme for the time integration.
As a case study, we consider the evolution of the minimum thread radius for Ca0 � 0:01

corresponding to a weak extensional ¯ow, and a small amplitude perturbation
�a1=a��t � 0� � 0:01 with initial reduced wave number �ka��t � 0� � 0:9: Results obtained on
the basis of long-wave approximation and the boundary integral method show signi®cant
discrepancies during the early stages of the motion. As, however, the wave ampli®es, respective
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graphs of the minimum radius show a common slope equal to ÿ0:0709 which is in agreement
with the theoretical prediction of Papageorgiou (1995). Fig 8(a) shows corresponding results
for a stronger extensional ¯ow at Ca0 � 0:1, and identical conditions otherwise. The dashed
line shows results obtained by the long-wave approximation, the solid line shows results
obtained by the boundary integral method, and the long dashed line shows results obtained by
the linear approximation. Due to rapid stretching of the thread, the agreement among the three
predictions is good over an extended period of time. The predictions of the long-wave model
are consistent with those of the boundary-integral simulation, both corroborating the
dominance of the similarity solution near the critical time. All three simulations predict
breakup at a ®nite critical time.

Fig. 8. Minimum thread radius predicted by numerical simulations based on the boundary integral method (solid

line), the long-wave model (dashed line), linear theory (long dashed line), for l � 0, (ka )(t = 0) = 0.9, and (a1/a )(t
= 0) = 0.01; (a) Ca0 � 0:1: the straight dashed line corresponds to Papageorgiou's similarity solution. (b)
Evolution of the minimum thread radius computed by the long-wave model for l � 0, (ka )(t = 0) = 0.9, (a1/a )(t

= 0) = 0.01; and Ca0 � 0:1, 0:25, and 0.5.
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Fig. 8(b) shows a family of numerical solutions based on the long wave model for higher
values of Ca0. For large values of Ca0, the extensional ¯ow dominates at short and moderate
times, causing the minimum thread radius to decay at an exponential rate. As the thread radius
is reduced, the capillary pressure g=a is raised and ®nally exceeds the constant magnitude of the
viscous stresses of the imposed elongational ¯ow; this occurs when a1da0=Ca0, where d is a
dimensionless coe�cient. Beyond that time, the similarity solution dominates the local
dynamics causing the development of an in¯ection point. The data in Fig. 8(b) suggest that the
constant d is on the order of 100.

6. Discussion

We have found that, in the context of linear theory, a perturbation with a su�ciently small
initial amplitude decays at long times, as long as neither the viscosity of the thread nor the
viscosity of the ambient ¯uid is equal to zero. If the viscosity of either ¯uid is non-zero,
perturbations of su�ciently small amplitude are stabilized by stretching due to convection. The
limit of zero or in®nite viscosity ratio has been shown by previous authors to be singular with
regard to thread breakup in a quiescent ¯uid; for any value of the viscosity ratio but zero and
in®nity, breakup occurs in an asymmetric manner with the interface forming conical structures
on either side of the point of minimum radius; for zero viscosity ratio, breakup occurs in a
symmetric fashion (Pozrikidis 1999, Lister and Stone 1998).
In practice, the viscosity ratio is ®nite, however small, and stretching due to an ambient ¯ow

or thread elongation should be able to suppress the growth of small perturbations, but not
necessarily the growth of ®nite-amplitude perturbations. A liquid thread subtended between
two rods forms a bridge that may be stretched by translating one or both of the rods in the
axial direction. If the relative velocity of translation is constant, then the rate of elongation is
reduced as the inverse of time. The linear analysis of Section 3 suggests that even in this case
of weak stretching, the thread will not break up at a ®nite time when both ¯uids are viscous.
In practice, however, nonlinear e�ects due to ®nite interface deformation and ¯uid inertia
become important when the thread has su�ered substantial deformation during the period of
transient growth, and may allow for ampli®cation leading to thread disintegration. Thus, in
practice, unless large disturbances are screened out, or the rate of elongation is su�ciently
large, breakup may occur for any value of the viscosity ratio including zero and in®nity.
We have found that, because of an increase in the average value of the surface tension due

to surfactant dilution, a surfactant has an overall destabilizing in¯uence on an extended thread
especially for small values of the viscosity ratio. Perturbations may grow during a permanent
or transient unstable period, with the wave numbers dominating during that period depending
on the initial condition. In contrast, in the absence of stretching, the most dangerous mode is
selected on the basis of maximum growth rate irrespective of the initial condition. Mikami et
al. (1975) established a criterion for wave number selection on a thinning thread based on the
behavior of the relative ampli®cation, de®ned as the ratio of the instantaneous disturbance
amplitude to the minimum amplitude occurring during the evolution. If a minimum does not
occur, or if the instantaneous wave number is larger than the one corresponding to the
minimum, then the relative ampli®cation is set equal to zero. The most unstable wave number
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at any instant corresponds to the maximum ampli®cation rate; breakup occurs when the
maximum disturbance amplitude becomes equal to the thread radius. The ratio of the
minimum disturbance amplitude to the initial thread radius is an unspeci®ed parameter.
Khakhar and Ottino (1987) proposed that the minimum disturbance amplitude should be set
equal to the molecular displacement associated with thermal ¯uctuations.
Mikami et al. (1975) and Khakhar and Ottino (1987) found that the aforementioned

criterion gives good agreement between theoretical predictions and laboratory observations,
although the comparisons are hindered by the fact that breakup does not occur simultaneously
over the entire length of the thread, and the spacing between the drops is not constant. We
have not been able to identify experiments describing the e�ect of a surfactant. The present
work, however, suggests that since surfactants have a signi®cant in¯uence on the minimum
disturbance amplitude and most dangerous instantaneous wave number, they will also have a
signi®cant in¯uence on the time of breakup and on the resulting drop density distribution.
Speci®cally, a surfactant should cause breakup to occur at an earlier time.

Acknowledgements

This research is supported by a grant provided by the National Science Foundation.

References

Adamson, A.W., 1990. Physical Chemistry of Surfaces. Wiley, New York.
Brenner, P.M., Lister, J.R., Stone, H.A., 1996. Pinching threads, singularities and the number 0.0304. Phys. Fluids

8, 2827±2836.
Eggers, J., 1997. Nonlinear dynamics and breakup of free-surface ¯ows. Rev. Modern Phys. 69, 865±930.

Grace, H.P., 1982. Dispersion Phenomena in high viscosity immiscible ¯uid systems and application of static mixers
as dispersion devices in such systems. Chem. Eng. Commun. 14, 225±277.

Khakhar, D.V., Ottino, J.M., 1987. Breakup of liquid threads in linear ¯ows. Int. J. Multiphase Flow 13, 71±86.

Kwak, S., Pozrikidis, C., 2001. E�ect of surfactants on the instability of a liquid thread or annular layer. Part I:
Quiescent ¯uids. Int. J. Multiphase Flow 27, 1±38.

Lister, J.R., Stone, H.A., 1998. Capillary breakup of a viscous thread surrounded by another viscous ¯uid. Phys.

Fluids 10, 2758±2764.
Mikami, T., Cox, R.G., Mason, S.G., 1975. Breakup of extending liquid threads. Int. J. Multiphase Flow 2, 113±

138.

Papageorgiou, D.T., 1995. On the breakup of viscous liquid threads. Phys. Fluids 7, 1529±1544.
Pozrikidis, C., 1992. Boundary integral and singularity methods for linearized viscous ¯ow. Cambridge University

Press, Cambridge.
Pozrikidis, C., 1999. Capillary instability and breakup of a viscous thread. J. Eng. Math. 36, 255±275.

Renardy, M., 1994. Some comments on the surface-tension driven break-up (or the lack of it) of viscoelastic jets. J.
Non-Newtonian Fluid Mech. 51, 97±107.

Tomotika, S., 1935. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous

¯uid. Proc. Roy. Soc. A 150, 322±337.
Tomotika, S., 1936. Breaking up of a drop of viscous liquid immersed in another viscous ¯uid which is extending at

a uniform rate. Proc. Roy. Soc. A 153, 302±318.

S. Kwak et al. / International Journal of Multiphase Flow 27 (2001) 39±6060


